首页> 外文OA文献 >Distributed training strategies for a computer vision deep learning algorithm on a distributed GPU cluster
【2h】

Distributed training strategies for a computer vision deep learning algorithm on a distributed GPU cluster

机译:分布式GpU集群上计算机视觉深度学习算法的分布式训练策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deep learning algorithms base their success on building high learning capacity models with millions of parameters that are tuned in a data-driven fashion. These models are trained by processing millions of examples, so that the development of more accurate algorithms is usually limited by the throughput of the computing devices on which they are trained. In this work, we explore how the training of a state-of-the-art neural network for computer vision can be parallelized on a distributed GPU cluster. The effect of distributing the training process is addressed from two different points of view. First, the scalability of the task and its performance in the distributed setting are analyzed. Second, the impact of distributed training methods on the final accuracy of the models is studied.
机译:深度学习算法的成功基于建立具有数以百万计的参数的高学习能力模型,这些参数以数据驱动的方式进行了调整。这些模型通过处理数百万个示例来进行训练,因此,更精确的算法的开发通常受到对其进行训练的计算设备的吞吐量的限制。在这项工作中,我们探索了如何在分布式GPU集群上并行化用于计算机视觉的最新神经网络的训练。从两个不同的角度解决了分配培训过程的影响。首先,分析了任务的可伸缩性及其在分布式环境中的性能。其次,研究了分布式训练方法对模型最终精度的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号